в начале координат - definizione. Che cos'è в начале координат
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è в начале координат - definizione

В начале игры (фильм)

Полярные координаты         
  • Фронт мощности звуковой волны промышленного громкоговорителя показан в сферических координатах при шести частотах
  • Точка <math>\scriptstyle{P}</math> начертана в цилиндрической системе координат
  • Эллипс
  • формулы Эйлера]]
  • Пример комплексного числа <math>\scriptstyle{z}</math>, нанесённого на комплексную плоскость
  • Cечение комптоновского рассеяния от угла рассеяния (для разной энергии фотона)
  • Точка в полярной системе координат
  • Область <math>\scriptstyle{R}</math> образована из <math>n</math> секторов (тут <math>\scriptstyle{n=5}</math>)
  • Область <math>\scriptstyle{R}</math>, которая образована полярной кривой <math>\scriptstyle{r(\varphi)}</math> и лучами <math>\scriptstyle{\varphi=a}</math> и <math>\scriptstyle{\varphi=b}</math>
  • Полярная роза задана уравнением <math>\scriptstyle{r(\varphi)=2\sin 4\varphi}</math>
  • Точка начертана в сферической системе координат
  • Одна из ветвей спирали Архимеда, задаваемая уравнением <math>\scriptstyle{r(\varphi)=\varphi}</math> для <math>\scriptstyle{0<\theta<6\pi}</math>
  • Диаграмма направленности (азимутальная) типичной направленной антенны

точки на плоскости, два числа, которые определяют положение этой точки относительно некоторой фиксированной точки О (полюс) и некоторого фиксированного луча ON (полярной оси), исходящего из полюса. Эти числа ρ (полярный радиус) и φ (полярный угол) равны соответственно расстоянию от О до Р и углу между ON и ОР. Угол φ называют иногда амплитудой, точки Р. Для взаимно однозначного соответствия между точками плоскости и парами П. к. изменение П. к. обычно ограничивают промежутками: 0 ≤ ρ ≤ + ∞; 0 ≤ φ < 2π (при этом полярный угол полюса остаётся неопределённым). Если же однозначности предпочитают непрерывность (чтобы при непрерывном движении точки её П. к. изменялись также непрерывно), то в качестве полярного угла берут величину φ0 + kπ (k - произвольное число), где φ0 есть угол NOP, а полярному радиусу приписывают знак + или -, смотря по тому, совпадает ли направление луча ОР с направлением, получающимся в результате поворота оси ON на угол, равный выбранному значению полярного угла, или же эти направления противоположны. См. также Координаты.

Рис. к ст. Полярные координаты.

ПОЛЯРНЫЕ КООРДИНАТЫ         
  • Фронт мощности звуковой волны промышленного громкоговорителя показан в сферических координатах при шести частотах
  • Точка <math>\scriptstyle{P}</math> начертана в цилиндрической системе координат
  • Эллипс
  • формулы Эйлера]]
  • Пример комплексного числа <math>\scriptstyle{z}</math>, нанесённого на комплексную плоскость
  • Cечение комптоновского рассеяния от угла рассеяния (для разной энергии фотона)
  • Точка в полярной системе координат
  • Область <math>\scriptstyle{R}</math> образована из <math>n</math> секторов (тут <math>\scriptstyle{n=5}</math>)
  • Область <math>\scriptstyle{R}</math>, которая образована полярной кривой <math>\scriptstyle{r(\varphi)}</math> и лучами <math>\scriptstyle{\varphi=a}</math> и <math>\scriptstyle{\varphi=b}</math>
  • Полярная роза задана уравнением <math>\scriptstyle{r(\varphi)=2\sin 4\varphi}</math>
  • Точка начертана в сферической системе координат
  • Одна из ветвей спирали Архимеда, задаваемая уравнением <math>\scriptstyle{r(\varphi)=\varphi}</math> для <math>\scriptstyle{0<\theta<6\pi}</math>
  • Диаграмма направленности (азимутальная) типичной направленной антенны
см. Координаты.
КРИВОЛИНЕЙНЫЕ КООРДИНАТЫ         
  • right
  • Криволинейные координаты в трёхмерном аффинном пространстве
  • right
координаты точки на плоскости, на поверхности или в пространстве, отличные от прямолинейных (декартовых) координат. На плоскости (поверхности) криволинейные координаты определяются при помощи таких двух семейств кривых (координатных линий), что любая кривая одного семейства пересекает любую кривую другого семейства не более чем в одной точке; координатами этой системы считаются соответствующие значения параметров семейств.Криволинейные координаты впервые использовал Я. Бернулли (1691). С именем К. Гаусса связаны криволинейные координаты на поверхности. Криволинейные координаты в пространстве и название "криволинейные координаты" впервые ввел Г. Ламе (1833).

Wikipedia

В начале игры

«В начале игры» — художественный фильм.